Arrange score
Examples
library(dplyr)
#>
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#>
#> filter, lag
#> The following objects are masked from ‘package:base’:
#>
#> intersect, setdiff, setequal, union
ames_subset <- modeldata::ames |>
dplyr::select(
Sale_Price,
MS_SubClass,
MS_Zoning,
Lot_Frontage,
Lot_Area,
Street
)
ames_subset <- ames_subset |>
dplyr::mutate(Sale_Price = log10(Sale_Price))
ames_aov_pval_res <-
score_aov_pval |>
fit(Sale_Price ~ ., data = ames_subset)
ames_aov_pval_res@results
#> # A tibble: 5 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 aov_pval 237. Sale_Price MS_SubClass
#> 2 aov_pval 130. Sale_Price MS_Zoning
#> 3 aov_pval NA Sale_Price Lot_Frontage
#> 4 aov_pval NA Sale_Price Lot_Area
#> 5 aov_pval 5.75 Sale_Price Street
# Arrange score
ames_aov_pval_res |> arrange_score()
#> # A tibble: 5 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 aov_pval 237. Sale_Price MS_SubClass
#> 2 aov_pval 130. Sale_Price MS_Zoning
#> 3 aov_pval 5.75 Sale_Price Street
#> 4 aov_pval NA Sale_Price Lot_Frontage
#> 5 aov_pval NA Sale_Price Lot_Area