General S7 classes for scoring objects
Source:R/class_score.R
, R/score-aov.R
, R/score-cor.R
, and 4 more
class_score.Rd
class_score
is an S7 object that contains slots for the characteristics of
predictor importance scores. More specific classes for individual methods are
based on this object (shown below).
Usage
class_score(
outcome_type = c("numeric", "factor"),
predictor_type = c("numeric", "factor"),
case_weights = logical(0),
range = integer(0),
inclusive = logical(0),
fallback_value = integer(0),
score_type = character(0),
sorts = function() NULL,
direction = character(0),
deterministic = logical(0),
tuning = logical(0),
calculating_fn = function() NULL,
label = character(0),
packages = character(0),
results = data.frame()
)
class_score_aov(
outcome_type = c("numeric", "factor"),
predictor_type = c("numeric", "factor"),
case_weights = logical(0),
range = integer(0),
inclusive = logical(0),
fallback_value = integer(0),
score_type = character(0),
sorts = function() NULL,
direction = character(0),
deterministic = logical(0),
tuning = logical(0),
calculating_fn = function() NULL,
label = character(0),
packages = character(0),
results = data.frame(),
neg_log10 = TRUE
)
class_score_cor(
outcome_type = c("numeric", "factor"),
predictor_type = c("numeric", "factor"),
case_weights = logical(0),
range = integer(0),
inclusive = logical(0),
fallback_value = integer(0),
score_type = character(0),
sorts = function() NULL,
direction = character(0),
deterministic = logical(0),
tuning = logical(0),
calculating_fn = function() NULL,
label = character(0),
packages = character(0),
results = data.frame()
)
class_score_xtab(
outcome_type = c("numeric", "factor"),
predictor_type = c("numeric", "factor"),
case_weights = logical(0),
range = integer(0),
inclusive = logical(0),
fallback_value = integer(0),
score_type = character(0),
sorts = function() NULL,
direction = character(0),
deterministic = logical(0),
tuning = logical(0),
calculating_fn = function() NULL,
label = character(0),
packages = character(0),
results = data.frame(),
neg_log10 = TRUE
)
class_score_imp_rf(
outcome_type = c("numeric", "factor"),
predictor_type = c("numeric", "factor"),
case_weights = logical(0),
range = integer(0),
inclusive = logical(0),
fallback_value = integer(0),
score_type = character(0),
sorts = function() NULL,
direction = character(0),
deterministic = logical(0),
tuning = logical(0),
calculating_fn = function() NULL,
label = character(0),
packages = character(0),
results = data.frame(),
engine = "ranger"
)
class_score_info_gain(
outcome_type = c("numeric", "factor"),
predictor_type = c("numeric", "factor"),
case_weights = logical(0),
range = integer(0),
inclusive = logical(0),
fallback_value = integer(0),
score_type = character(0),
sorts = function() NULL,
direction = character(0),
deterministic = logical(0),
tuning = logical(0),
calculating_fn = function() NULL,
label = character(0),
packages = character(0),
results = data.frame(),
mode = "classification"
)
class_score_roc_auc(
outcome_type = c("numeric", "factor"),
predictor_type = c("numeric", "factor"),
case_weights = logical(0),
range = integer(0),
inclusive = logical(0),
fallback_value = integer(0),
score_type = character(0),
sorts = function() NULL,
direction = character(0),
deterministic = logical(0),
tuning = logical(0),
calculating_fn = function() NULL,
label = character(0),
packages = character(0),
results = data.frame()
)