Show best score, based on number or proportion of predictors with optional cutoff value (singular)
Source:R/utilities.R
show_best_score_dual.Rd
Show best score, based on number or proportion of predictors with optional cutoff value (singular)
Arguments
- x
A score class object, i.e.,
score_*
.- ...
Further arguments passed to or from other methods.
- prop_terms
A numeric value specifying the proportion of predictors to consider.
- num_terms
An integer value specifying the number of predictors to consider.
- cutoff
A numeric value specifying the cutoff value.
Examples
library(dplyr)
ames_subset <- modeldata::ames |>
dplyr::select(
Sale_Price,
MS_SubClass,
MS_Zoning,
Lot_Frontage,
Lot_Area,
Street
)
ames_subset <- ames_subset |>
dplyr::mutate(Sale_Price = log10(Sale_Price))
ames_aov_pval_res <-
score_aov_pval |>
fit(Sale_Price ~ ., data = ames_subset)
ames_aov_pval_res@results
#> # A tibble: 5 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 aov_pval 237. Sale_Price MS_SubClass
#> 2 aov_pval 130. Sale_Price MS_Zoning
#> 3 aov_pval NA Sale_Price Lot_Frontage
#> 4 aov_pval NA Sale_Price Lot_Area
#> 5 aov_pval 5.75 Sale_Price Street
ames_aov_pval_res |> show_best_score_dual(prop_terms = 0.5)
#> # A tibble: 2 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 aov_pval 237. Sale_Price MS_SubClass
#> 2 aov_pval 130. Sale_Price MS_Zoning
ames_aov_pval_res |> show_best_score_dual(prop_terms = 0.5, cutoff = 130)
#> # A tibble: 1 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 aov_pval 237. Sale_Price MS_SubClass
ames_aov_pval_res |> show_best_score_dual(num_terms = 2)
#> # A tibble: 2 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 aov_pval 237. Sale_Price MS_SubClass
#> 2 aov_pval 130. Sale_Price MS_Zoning
ames_aov_pval_res |> show_best_score_dual(prop_terms = 2, cutoff = 130)
#> # A tibble: 1 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 aov_pval 237. Sale_Price MS_SubClass