
Rank score based on dplyr::dense_rank()
, where tied values receive the same rank and ranks are without gaps (singular)
Source: R/utilities.R
rank_best_score_dense.Rd
Rank score based on dplyr::dense_rank()
, where tied values receive the
same rank and ranks are without gaps (singular)
Examples
library(dplyr)
ames_subset <- modeldata::ames |>
dplyr::select(
Sale_Price,
MS_SubClass,
MS_Zoning,
Lot_Frontage,
Lot_Area,
Street
)
ames_subset <- ames_subset |>
dplyr::mutate(Sale_Price = log10(Sale_Price))
ames_aov_pval_res <-
score_aov_pval |>
fit(Sale_Price ~ ., data = ames_subset)
ames_aov_pval_res@results
#> # A tibble: 5 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 aov_pval 237. Sale_Price MS_SubClass
#> 2 aov_pval 130. Sale_Price MS_Zoning
#> 3 aov_pval NA Sale_Price Lot_Frontage
#> 4 aov_pval NA Sale_Price Lot_Area
#> 5 aov_pval 5.75 Sale_Price Street
# Rank score
ames_aov_pval_res |> rank_best_score_dense()
#> # A tibble: 5 × 5
#> name score outcome predictor rank
#> <chr> <dbl> <chr> <chr> <int>
#> 1 aov_pval 237. Sale_Price MS_SubClass 1
#> 2 aov_pval 130. Sale_Price MS_Zoning 2
#> 3 aov_pval NA Sale_Price Lot_Frontage NA
#> 4 aov_pval NA Sale_Price Lot_Area NA
#> 5 aov_pval 5.75 Sale_Price Street 3