Skip to content

The area under the ROC curves can be used to measure predictor importance.

Usage

score_roc_auc

Format

An object of class filtro::class_score_roc_auc (inherits from filtro::class_score, S7_object) of length 1.

Value

An S7 object. The primary property of interest is in results. This is a data frame of results that is populated by the fit() method and has columns:

  • name: The name of the score (e.g., roc_auc).

  • score: The estimates for each predictor.

  • outcome: The name of the outcome column.

  • predictor: The names of the predictor inputs.

These data are accessed using object@results (see examples below).

Details

This objects are used when either:

  • The predictors are numeric and the outcome is a factor/category, or

  • The predictors are factors and the outcome is numeric.

In either case, a ROC curve (via pROC::roc() or pROC::multiclass.roc()) is created with the proper variable roles, and the area under the ROC curve is computed (via pROC::auc()). Values higher than 0.5 (i.e., max(roc_auc, 1 - roc_auc) > 0.5) are associated with more important predictors.

Estimating the scores

In filtro, the score_* objects define a scoring method (e.g., data input requirements, package dependencies, etc). To compute the scores for a specific data set, the fit() method is used. The main arguments for these functions are:

object

A score class object (e.g., score_cor_pearson).

formula

A standard R formula with a single outcome on the right-hand side and one or more predictors (or .) on the left-hand side. The data are processed via stats::model.frame()

data

A data frame containing the relevant columns defined by the formula.

...

Further arguments passed to or from other methods.

case_weights

A quantitative vector of case weights that is the same length as the number of rows in data. The default of NULL indicates that there are no case weights. NOTE case weights cannot be used when a multiclass ROC is computed.

Missing values are removed for each predictor/outcome combination being scored.

In cases where the underlying computations fail, the scoring proceeds silently, and a missing value is given for the score.

Examples

library(dplyr)

# ROC AUC where the numeric predictors are the predictors and
# `class` is the class outcome/response

cells_subset <- modeldata::cells |>
  dplyr::select(
    class,
    angle_ch_1,
    area_ch_1,
    avg_inten_ch_1,
    avg_inten_ch_2,
    avg_inten_ch_3
  )

cells_roc_auc_res <- score_roc_auc |>
  fit(class ~ ., data = cells_subset)
cells_roc_auc_res@results
#> # A tibble: 5 × 4
#>   name    score outcome predictor     
#>   <chr>   <dbl> <chr>   <chr>         
#> 1 roc_auc 0.502 class   angle_ch_1    
#> 2 roc_auc 0.591 class   area_ch_1     
#> 3 roc_auc 0.760 class   avg_inten_ch_1
#> 4 roc_auc 0.777 class   avg_inten_ch_2
#> 5 roc_auc 0.513 class   avg_inten_ch_3

# ----------------------------------------------------------------------------

# ROC AUC where `Sale_Price` is the numeric predictor and the class predictors
# are the outcomes/responses

ames_subset <- modeldata::ames |>
  dplyr::select(
    Sale_Price,
    MS_SubClass,
    MS_Zoning,
    Lot_Frontage,
    Lot_Area,
    Street
  )
ames_subset <- ames_subset |>
  dplyr::mutate(Sale_Price = log10(Sale_Price))

ames_roc_auc_res <- score_roc_auc |>
  fit(Sale_Price ~ ., data = ames_subset)
ames_roc_auc_res@results
#> # A tibble: 5 × 4
#>   name     score outcome    predictor   
#>   <chr>    <dbl> <chr>      <chr>       
#> 1 roc_auc  0.742 Sale_Price MS_SubClass 
#> 2 roc_auc  0.853 Sale_Price MS_Zoning   
#> 3 roc_auc NA     Sale_Price Lot_Frontage
#> 4 roc_auc NA     Sale_Price Lot_Area    
#> 5 roc_auc  0.807 Sale_Price Street      
# TODO Add multiclass example